If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+27x-45=0
a = 3; b = 27; c = -45;
Δ = b2-4ac
Δ = 272-4·3·(-45)
Δ = 1269
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1269}=\sqrt{9*141}=\sqrt{9}*\sqrt{141}=3\sqrt{141}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-3\sqrt{141}}{2*3}=\frac{-27-3\sqrt{141}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+3\sqrt{141}}{2*3}=\frac{-27+3\sqrt{141}}{6} $
| x+36=1-4(x-5X) | | 3x+6(1-x)=4 | | x+36=1-4(x-5 | | 5x/14=x-10 | | 3x+114=143 | | b+2/3=b-1/4 | | 4x-4x=5-14 | | (3/4)+(x-7/x+14)=0 | | 6/7x-x=11/22x-5 | | 2x+9=5x4 | | x=4-2(0) | | (x-5)^{2}=2x-2 | | 5x-8=6+8 | | 8m-4=30 | | 2(4-2y)+4y=8 | | 2(v-7)=22 | | 3(-1y+-4)=-24 | | 4+4+15-20=8x2-28 | | 2(x06)-4(x+2)=-12 | | 5x3=3x+3 | | -2x+7x-9=5(x-3)-6 | | -20+3+4x=7+8x-2 | | -20*3*4x=7+8x-2 | | 7x=12x-115 | | -2q+9=-3q+4 | | y=2×+5×-3 | | X^4-113x^2=-3136 | | 3/4a-22=-13 | | 360/x-360/x+4=3 | | 26-6x=12-4x | | 74=4y | | 13y+13y+5-13=12y*12y+7-3= |